
Abstract

We begin low-dimensional K-theory, i.e., describe $K_{0}(-), K_{1}(-)$, and $K_{2}(-)$, in various settings. The main sources for this talk are nLab, Chapters I and II of The K-book, and Chapter 1 of Friedlander.

Definition. Recall that the forgetful functor $U: \mathbf{A b} \rightarrow \mathbf{C M o n}$ admits a left adjoint $K: \mathbf{C M o n} \rightarrow \mathbf{A b}$, called the group completion functor. For any commutative monoid $(C,+)$, we call the abelian group $K(C)$ the Grothendieck group of G, which is constructed as follows.

Consider $S:=C \times C / \sim$ where $\left(a_{1}, b_{1}\right) \sim\left(a_{2}, b_{2}\right)$ if

$$
\left(a_{1}+b_{2}+k=b_{1}+a_{2}+k\right)
$$

for some $k \in C$. Note that $\sim=\sim^{\prime}$ where $\left(a_{1}, b_{1}\right) \sim^{\prime}\left(a_{2}, b_{2}\right)$ if

$$
\left(a_{1}+k_{1}, b_{1}+k_{1}\right)=\left(a_{2}+k_{2}, b_{2}+k_{2}\right)
$$

for some $\left(k_{1}, k_{2}\right) \in C \times C$. Then set $K(C)=(S,+)$, where + is inherited from C and acts componentwise on equivalence classes. Notice that \sim^{\prime} makes it clear that $\left[a_{1}, b_{1}\right]^{-1}=\left[b_{1}, a_{1}\right]$.

Proposition 1. The inclusion $C \hookrightarrow K(C)$ given by $x \mapsto[x]:=[x, 0]$ is injective iff C is a cancellation monoid.

Lemma 1. (Universal property of the Grothendieck group) Let B be an abelian group and $f: A \rightarrow B$ a monoid homomorphism. Then we have

Proof. Define \tilde{f} by $\left[a_{1}, b_{1}\right] \mapsto f\left(a_{1}\right)-f\left(b_{1}\right)$.
Lemma 2. $K\left(C_{1} \times C_{2}\right) \cong K\left(C_{1}\right) \times K\left(C_{2}\right)$.
Definition. A submonoid L of C is cofinal if for any $c \in C$, there is some $c^{\prime} \in C$ such that $c+c^{\prime} \in L$.
Proposition 2. Let L be cofinal in commutative C.

1. Any element of $K(C)$ can be written as $[m]-[n]$ for some $m, n \in C$.
2. $K(L) \leq K(C)$.
3. Any element of $K(C)$ can be written as $[m]-[l]$ for some $m \in C$ and $l \in L$.
4. If $[m]=\left[m^{\prime}\right]$, then $m+l=m^{\prime}+l$ for some $l \in L$.

Example 1.

1. $K(\mathbb{N}) \cong \mathbb{Z}$ via $\left[a_{1}, b_{1}\right] \mapsto a_{1}-b_{1}$.
2. $K\left(\mathbb{Z}^{\times}\right) \cong \mathbb{Q}^{\times}$via $\left[a_{1}, b_{1}\right] \mapsto \frac{a_{1}}{b_{1}}$.

Definition. Let R be a unital ring. Let $\left(\mathbf{P}(R), \oplus, \otimes_{R}\right)$ denote the semiring of (isomorphism classes of) finitely generated projective R-modules. Then we define $K_{0}(R)=K(\mathbf{P}(R))$.

Lemma 3. $\mathbf{P}\left(R_{1} \times R_{2}\right) \cong \mathbf{P}\left(R_{1}\right) \times \mathbf{P}\left(R_{2}\right)$. Therefore, K_{0} can be computed componentwise by Lemma 2 .

Remark 1. $K_{0}(-)$ defines a functor from Ring to Ab. Let $f: R \rightarrow S$ be a ring homomorphism and P be a finitely generated projective R-module. The assignment of f under $K_{0}(-)$ goes as follows.

1. Construct $S \otimes_{R} P$, the base extension of P. This is the unique S-module $\left(s^{\prime}, s \otimes p\right) \mapsto s^{\prime} s \times p$ compatible with the R-module structure on S induced by f. This is also an R-module with $f(r) \cdot t:=r \cdot t$ for $t \in S \otimes_{R} P$. We know that $P \oplus Q$ is free for some R-module Q. Since $S \otimes_{R}(P \oplus Q) \cong_{S}\left(S \otimes_{R} P\right) \oplus\left(S \otimes_{R} Q\right)$ and $P \oplus Q$ is free over S via f, it follows that $S \otimes_{R} P$ is a finitely generated projective S-module.
2. We've just defined a monoid homomorphism $\tilde{f}: \mathbf{P}(R) \rightarrow \mathbf{P}(S)$.
3. Apply the universal property of K to find the filling

where we set $K_{0}(f)=f_{*}$.
Remark 2. (Eilenberg Swindle) Suppose $P \oplus Q=R^{n}$ as R-modules. Then

$$
P \oplus R^{\infty} \cong P \oplus(Q \oplus P) \oplus(Q \oplus P) \oplus \cdots \cong(P \oplus Q) \oplus(P \oplus Q) \oplus \cdots \cong R^{\infty}
$$

Therefore, if we added R^{∞} to $\mathbf{P}(R)$, then we would have $[P]=0$ for each finitely generated projective P.
Example 2. If $R=F$ is a field, then $\mathbf{P}(R) \cong \mathbb{N}$ and, by Example $1, K_{0}(R) \cong \mathbb{Z}$.
We can generalize this phenomenon a bit.
Definition. A ring R has the invariant basis property (IBP) if $R^{n} \neq R^{m}$ when $n \neq m$. Note that any commutative ring has the IBP.

Definition. An R-module P is stably free of rank $m-n$ if $P \oplus R^{m} \cong R^{n}$ for some m and n.
Lemma 4. The map $f: \mathbb{N} \rightarrow \mathbf{P}(R)$ defined by $n \mapsto R^{n}$ induces a homomorphism $\phi: \mathbb{Z} \rightarrow K_{0}(R)$.

1. ϕ is injective iff R has the IBP.
2. Suppose R has IBP. Then $K_{0}(R) \cong \mathbb{Z}$ iff every finitely generated projective R-module is stably free. Proof.
3. By Lemma 3(4), we know that $[P]=[Q]$ in $K_{0}(R)$ iff $P \oplus R^{m} \cong Q \oplus R^{m}$ for some m.
4. $[P]=\left[R^{n}\right]$ iff P is stably free.

Example 3. Suppose that R is commutative. There is a ring homomorphism $R \rightarrow F$ with F a field. Then the induced map $K_{0}(R) \rightarrow K_{0}(F) \cong \mathbb{Z}$ sends $[R]$ to 1 . Also, the map $\phi: \mathbb{Z} \rightarrow K_{0}(R)$ is injective by Lemma 4. Letting $K:=\operatorname{ker}\left(K_{0}(R) \rightarrow \mathbb{Z}\right)$, we get a split exact sequence of abelian groups, so that $K_{0}(R) \cong \mathbb{Z} \oplus K$.

$$
1 \longrightarrow K \longrightarrow K_{0}(R) \longrightarrow \mathbb{Z} \longrightarrow 1
$$

Example 4. A ring R is a flasque if there is an R-bimodule M which is also a finitely generated projective on one side along with a bimodule isomorphism $R \oplus M \cong M$. Then since $P \oplus\left(P \otimes_{R} M\right) \cong P \otimes_{R}(R \oplus M) \cong$ $P \otimes_{R} M$, we see that $K_{0}(R)=0$.
Example 5. A module is semisimple if it is the direct sum of simple modules. A ring R is called semisimple if it a semisimple R-module. Notice that any semisimple module is both Noetherian and Artinian and that any module over a semisimple ring is semisimple.

Suppose R is semisimple with summands V_{1}, \ldots, V_{m}. Then any finitely generated R-module is $\bigoplus_{i=1}^{m} V_{i}^{l_{i}}$, where the l_{i} are uniquely determined by Krull-Remak-Schmidt. Hence $\mathbf{P}(R) \cong \mathbb{N}^{m}$, and $K_{0}(R) \cong \mathbb{Z}^{m}$.

Example 6. A ring R is von Neumann regular if $(\forall r \in R)\left(\exists x_{r} \in R\right)\left(r x_{r} r=r\right)$. It turns out that any one-sided ideal in R is generated by an idempotent element. Let E / \sim denote the set of idempotent elements in R under the equivalence $e_{1} \sim e_{2}$ if the two generate the same ideal. Then E / \sim forms a lattice where the join and meet correspond to ideal addition and intersection, respectively.

Kaplansky (1998) proved that any projective R-module is some direct sum of (e) with e idempotent. It follows that E / \sim determines $K_{0}(R)$.

Proposition 3. Let R be commutative. It can be shown that the following are equivalent.

1. $R_{\text {red }}$ is a commutative von Neumann regular ring.
2. R has (Krull) dimension 0 .
3. $\operatorname{Spec}(R)$ is compact, Hausdorff, and totally disconnected. (This is a very strong condition.)

Lemma 5. If $I \subset R$ is nilpotent, then it's not hard to show that $\mathbf{P}(R / I) \cong \mathbf{P}(R)$, hence $K_{0}(R) \cong K_{0}(R / I)$.
Definition. Let R be a commutative ring. The rank of a finitely generated projective R-module P at a prime ideal \mathfrak{p} is the function

$$
\text { rk }: \operatorname{Spec}(R) \rightarrow \mathbb{N} \quad \mathfrak{p} \mapsto \operatorname{dim}_{R_{\mathfrak{p}}}\left(P \otimes R_{\mathfrak{p}}\right)
$$

Proposition 4. The rank of a finitely generated projective module is

1. continuous.
2. a semiring homomorphism.

Definition. An R-module M is a componentwise free module if we have $R=\prod_{i=1}^{n} R_{i}$ and $M \cong \prod_{i=1}^{n} R_{i}^{c_{i}}$ for some integers c_{i}. Note that M must be projective in this case.

Lemma 6. Let R be commutative. The monoid L of finitely generated componentwise free R-modules has is isomorphic to $[\operatorname{Spec}(R), \mathbb{N}]$.

Proof. Let $f: \operatorname{Spec}(R) \rightarrow \mathbb{N}$ be continuous. By some point-set topology, we see that $\operatorname{im} f$ is finite, say $\left\{n_{1}, \ldots, n_{c}\right\}$. It's also possible to write $R=R_{1} \times \cdots \times R_{c}$. Then $R^{f}:=R_{1}^{n_{1}} \times \cdots \times R_{c}^{n_{c}}$ is a finitely generated componentwise free R-module. Moreover, $f \mapsto R^{f}$ has inverse rk restricted to componentwise free modules.

Theorem 1. (Pierce) If R is a 0 -dimensional commutative ring, then

$$
K_{0}(R) \cong[\operatorname{Spec}(R), \mathbb{Z}]
$$

where $[X, Y]$ denotes the semiring of continuous maps $f: X \rightarrow Y$.
Proof. We have that $R_{\text {red }}$ is a commutative von Neumann regular ring by Proposition 3. Any ideal (d) in $R_{\text {red }}$ where d is idempotent is componentwise free. By Kaplansky, every object X of $\mathbf{P}(R)$ is therefore componentwise free. Therefore, $\mathbf{P}\left(R_{\text {red }}\right) \cong\left[\operatorname{Spec}\left(R_{\text {red }}\right), \mathbb{N}\right]$, giving $K_{0}\left(R_{\text {red }}\right) \cong\left[\operatorname{Spec}\left(R_{\text {red }}\right), \mathbb{Z}\right]$. By Lemma 5 and the fact that $\operatorname{Spec}\left(R_{\text {red }}\right)$ is homeomorphic to $\operatorname{Spec}(R)$, it follows that $K_{0}(R) \cong\left[\operatorname{Spec}\left(R_{\text {red }}\right), \mathbb{Z}\right] \cong$ $[\operatorname{Spec}(R), \mathbb{Z}]$.

Remark 3. When R is commutative, let $H_{0}(R):=[\operatorname{Spec}(R), \mathbb{Z}]$. If R is Noetherian, then $H_{0}(R) \cong \mathbb{Z}^{c}$ where $c<\infty$ denotes the number of components of $H_{0}(R)$. If R is a domain, then $H_{0}(R)$ is connected, implying $H_{0}(R) \cong \mathbb{Z}$.

The submonoid $L \subset \mathbf{P}(R)$ of componentwise free modules is cofinal, so that $K(L) \leq K_{0}(R)$. Moreover, $K(L) \cong H_{0}(R)$ by Lemma 6 .

The rank of a projective module induces a homomorphism rank : $K_{0}(R) \rightarrow H_{0}(R)$. Since $\operatorname{rank}\left(R^{f}\right)=f$ for any $R^{f} \in L$, we see that

$$
1 \longrightarrow H_{0}(R) \cong K(L) \longleftrightarrow K_{0}(R) \xrightarrow{\text { rank }} H_{0}(R) \longrightarrow 1
$$

splits. This implies that

$$
K_{0}(R) \cong H_{0}(R) \oplus \widetilde{K}_{0}(R)
$$

where $\widetilde{K}_{0}(R)$ denotes $\operatorname{ker}($ rank $)$.
Example 7. The Whitehead group of a group G is the quotient $W h_{0}(G)=K_{0}(\mathbb{Z}[G]) / \mathbb{Z}$, where $\mathbb{Z}[G]$ denotes the group ring. The augmentation map $f: \mathbb{Z}[G] \rightarrow \mathbb{Z}$ induces a split exact sequence

$$
1 \longrightarrow W h_{0}(G) \longrightarrow K_{0}(\mathbb{Z}[G]) \longrightarrow K_{0}(\mathbb{Z})=\mathbb{Z} \longrightarrow 1
$$

Hence $K_{0}(\mathbb{Z}[G]) \cong \mathbb{Z} \oplus W h_{0}(G)$. We know due to Swan that if G is finite, then $W h_{0}(G) \cong \widetilde{K}_{0}(\mathbb{Z}[G])$ and $\mathbb{Z} \cong H_{0}(\mathbb{Z})$.

Definition. A functor $F: \mathscr{C} \rightarrow \mathscr{D}$ is additive if $F: \mathscr{C}(X, Y) \rightarrow \mathscr{D}(F X, F Y)$ is a homomorphism of abelian groups for any $X, Y \in \mathrm{ob} \mathscr{C}$.

Definition. The rings R and S are Morita equivalent if there exists an additive equivalence between $\operatorname{Mod}_{R} R$ and Mod_{S}.

Theorem 2. If R and S are Morita equivalent, then $K_{0}(R) \cong K_{0}(S)$.
Proof. Click here for a self-contained proof.
[[We move from algebraic to topological K-theory.]]
Definition. Let $f: F \rightarrow X$ and $g: G \rightarrow X$ be vector bundles. The Whitney sum of f and g is the vector bundle $F \oplus G$ on X whose fiber at $x \in X$ is $F_{x} \oplus G_{x}$. The tensor product bundle $F \oplus G$ is defined similarly.

Definition. A vector bundle homomorphism between $\phi: E_{1} \rightarrow X_{1}$ and $\psi: E_{2} \rightarrow X_{2}$ is a pair of maps $f: E_{1} \rightarrow E_{2}$ and $g: X_{1} \rightarrow X_{2}$ such that the following conditions holds.
1.

2. For each $x \in X_{1}$, the map $f \upharpoonright_{\phi^{-1}(x)}: \phi^{-1}(x) \rightarrow \psi^{-1}(g(x))$ is a linear map.

Definition. Let $\left(\operatorname{Vect}_{\mathbb{F}}(X), \oplus\right)$ denote the abelian monoid of (isomorphism classes of) \mathbb{F}-vector bundles on the paracompact space X. We define

$$
K U(X)=K\left(V e c t_{\mathbb{C}}(X)\right) \quad K O(X)=K\left(V e c t_{\mathbb{R}}(X)\right)
$$

Note that these are commutative rings with identity. We apply the notation $K_{t o p}(-)$ on topological spaces when we wish to omit the base field.

Remark 4. $K U(-)$ and $K O(-)$ define contravariant functors Top $\rightarrow \mathbf{A b}$. Let $f: Y \rightarrow X$ be a map of spaces and $\phi: E \rightarrow X$ be a vector bundle. Define the subspace $f^{*} E=\{(y, e) \in Y \times E: f(y)=\phi(e)\}$. Define the vector bundle $f^{*}(\phi): f^{*} E \rightarrow Y$ as the restriction of the projection map $\pi: Y \times E \rightarrow Y$. Hence we have a morhism $\phi \mapsto f^{*}(\phi) \rightarrow \operatorname{Vect}_{\mathbb{F}}(X)$ to $\operatorname{Vect}_{\mathbb{F}}(Y)$ of monoids. The universal property of K induces a unique morphism $f^{*}: K_{\text {top }}(X) \rightarrow K_{\text {top }}(Y)$.

Lemma 7. If X and Y are homotopy equivalent, then $K(X) \cong K(Y)$.
Proof. Apply the Homotopy Invariance Theorem (HIT), which states that if Y is paracompact and f, g : $Y \rightarrow X$ are homotopic, then $f^{*} E \cong g^{*} E$ for any vector bundle E over X.

Example 8.

1. $K_{\text {top }}(*)=\mathbb{Z}$.
2. If X is contractible, then the HIT implies $K O(X)=K U(X)=\mathbb{Z}$
3. We compute the following groups. See I.4.9 of The K-book for a justification.

$$
\begin{gathered}
K O\left(S^{1}\right) \cong \mathbb{Z} \times C_{2} \quad K U\left(S^{1}\right) \cong \mathbb{Z} \\
K O\left(S^{2}\right) \cong \mathbb{Z} \times C_{2} \quad K U\left(S^{2}\right) \cong \mathbb{Z} \times \mathbb{Z} \\
K O\left(S^{3}\right) \cong K U\left(S^{3}\right) \cong \mathbb{Z} \\
K)\left(S^{4}\right) \cong K U\left(S^{4}\right) \cong \mathbb{Z} \times \mathbb{Z}
\end{gathered}
$$

Definition. The dimension of bundle E over X is the continuous homomorphism $\widehat{\operatorname{dim}}(E): X \rightarrow \mathbb{N}$ given by $x \mapsto \operatorname{dim}\left(E_{x}\right)$.

Definition. A vector bundle $p: E \rightarrow X$ is a componentwise trivial bundle if we can write $X=\coprod X_{i}$ such that each X_{i} is a component of X and $p \upharpoonright_{p^{-1}\left(X_{i}\right)}$ is trivial.

Lemma 8. The submonoid of componentwise trivial bundles over X is isomorphic to $[X, \mathbb{N}]$.
Proof. Send a given map $f: X \rightarrow \mathbb{N}$ to $T^{f}:=\coprod_{i \in \mathbb{N}}\left(f^{-1}(i) \times \mathbb{F}\right)$. Conversely, if E be a componentwise trivial bundle, then $E \cong T^{\widehat{\operatorname{dim}}(E)}$.

Remark 5. Thus, the sub-monoid of trivial bundles and the sub-monoid of componentwise trivial bundles are naturally isomorphic to \mathbb{N} and $[X, \mathbb{N}]$, respectively. When X is compact, these are cofinal in $V e c t_{\mathbb{F}}(X)$ by the Subbundle Theorem (proven using Riemannian geometry), giving $\mathbb{Z} \leq[X, \mathbb{Z}] \leq K_{\text {top }}(X)$.

Remark 6. We get a split exact sequence.

$$
1 \longrightarrow \widetilde{K}_{t o p}(X) \longrightarrow K_{\text {top }}(X) \longrightarrow \underset{\widehat{\operatorname{dim}}}{\longrightarrow}[X, \mathbb{Z}] \longrightarrow 1
$$

where $\widetilde{K}_{t o p}(X)$ denotes $\operatorname{ker}(\widehat{\operatorname{dim}})$.
Remark 7. The map of monoids $\operatorname{Vect}_{\mathbb{R}}(X) \rightarrow \operatorname{Vect}_{\mathbb{C}}(X)$ given by $[E] \mapsto[E \otimes \mathbb{C}]$ extends by universality to a homomorphism $K O(X) \rightarrow K U(X)$. Likewise, the forgetful functor $V e c t_{\mathbb{C}}(X) \rightarrow V e c t_{\mathbb{R}}(X)$ extends to a homomorphism $K U(X) \rightarrow K O(X)$.

Theorem 3. (Swan) Here is a nice early connection between algebraic and topological K-theory. Let X be a compact Hausdorff space and $\mathcal{C}(X, \mathbb{F})$ denote the ring of continuous functions $X \rightarrow \mathbb{F}$. For any $E \in V e c t{ }_{F}(X)$, set $\Gamma(X, E)=\left\{s: X \rightarrow E: p \circ s=\operatorname{Id}_{X}\right\}$, the vector space of global sections of E. Then the map $E \mapsto \Gamma(X, E)$ induces isomorphisms $K O(X) \cong K_{0}(\mathcal{C}(X, \mathbb{R}))$ and $K U(X) \cong K_{0}(\mathcal{C}(X, \mathbb{C}))$.

Definition. Our results thus far can be extended to symmetric monodical categories because these come equipped with a notion of direct sum that enabled our Grothendieck construction. A symmetric monoidal category S is equipped with a functor $\square: S \times S \rightarrow S$, a base object e, and four natural isomorphisms expressing commutativity, associativity, and that e acts as an identity. These four must also satisfy coherence properties.

Example 9. The following are examples of symmetric monoidal category .

1. k-vector spaces with \otimes_{k}.
2. Any category with finite coproducts where $s \square t:=s \amalg t$.
3. The category of pointed topological spaces where $s \square t:=s \wedge t$ and $e:=S^{0}$.

Definition. Suppose that the class of isomorphism classes of objects of a category S is a set, called $S^{\text {iso }}$. If S is symmetric monoidal, then $\left(S^{\text {iso }}, \square\right)$ is an abelian monoid with identity element e. Then we define the Grothendieck group of S as $K_{0}(S)$.

