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Abstract

We begin low-dimensional K-theory, i.e., describe Ko(—), Ki(—), and K2(—), in various settings.
The main sources for this talk are nLab, Chapters I and II of The K-book, and Chapter 1 of Friedlander.

Definition. Recall that the forgetful functor U : Ab — CMon admits a left adjoint K : CMon — Ab,
called the group completion functor. For any commutative monoid (C,+), we call the abelian group K(C)
the Grothendieck group of G, which is constructed as follows.

Consider S := € > C/_ where (a1,b1) ~ (ag,b9) if
(a1 +bs+k=b+ax+k)
for some k € C. Note that ~=~' where (a1,b1) ~' (az,by) if
(a1 + k1,01 + k1) = (a2 + k2, by + k2)

for some (k1,ke) € C x C. Then set K(C) = (S, +), where + is inherited from C and acts componentwise
on equivalence classes. Notice that ~' makes it clear that [a1,b1]™! = [b1, a1].

Proposition 1. The inclusion C — K(C) given by  — [z] := [z,0] is injective iff C' is a cancellation
monoid.

Lemma 1. (Universal property of the Grothendieck group) Let B be an abelian group and f: A — B a
monoid homomorphism. Then we have

Proof. Define f by [a1,b1] — f(a1) — f(b1). O
Lemma 2. K(C; x Cp) 2 K(C1) x K(C3).
Definition. A submonoid L of C is cofinal if for any ¢ € C, there is some ¢’ € C such that ¢+ ¢ € L.
Proposition 2. Let L be cofinal in commutative C'.

1. Any element of K(C') can be written as [m] — [n] for some m,n € C.

2. K(L) < K(C).

3. Any element of K(C) can be written as [m] — [{] for some m € C and | € L.

4. If [m] = [m/], then m + 1 =m’ + 1 for some [ € L.
Example 1.

1. K(N) 2 Z via [a1,b1] = a1 — by.

2. K(Z*) = Q" via [ay,by] = 2.

Definition. Let R be a unital ring. Let (P(R),®,®pg) denote the semiring of (isomorphism classes of)
finitely generated projective R-modules. Then we define Ky(R) = K(P(R)).

Lemma 3. P(R; X Ry) 2 P(Ry) X P(Rz). Therefore, Ky can be computed componentwise by Lemma 2.



Remark 1. Ky(—) defines a functor from Ring to Ab. Let f : R — S be a ring homomorphism and P be
a finitely generated projective R-module. The assignment of f under Ko(—) goes as follows.

1. Construct S®pg P, the base extension of P. This is the unique S-module (s’, s®p) — s's x p compatible
with the R-module structure on S induced by f. This is also an R-module with f(r) -t := r -t for
t € S®pP. We know that P®Q is free for some R-module Q. Since SQr(P®Q) =5 (SRrP)B(S®rQ)
and P @ @ is free over S via f, it follows that S @ P is a finitely generated projective S-module.

2. We've just defined a monoid homomorphism f : P(R) — P(S).

3. Apply the universal property of K to find the filling

P(R) — I P(S)

S
K(P(R)) » K(P(5))
where we set Ko(f) = fe.
Remark 2. (Eilenberg Swindle) Suppose P & @ = R™ as R-modules. Then

PB3R*=Po(QaP)d(QOP)®---=Z(P3Q)d(PoQ)®--- = R™.
Therefore, if we added R* to P(R), then we would have [P] = 0 for each finitely generated projective P.

Example 2. If R = F is a field, then P(R) = N and, by Example 1, Ky(R) = Z.
We can generalize this phenomenon a bit.

Definition. A ring R has the invariant basis property (IBP) if R™ % R™ when n # m. Note that any
commutative ring has the IBP.

Definition. An R-module P is stably free of rank m —n if P& R"™ = R™ for some m and n.
Lemma 4. The map f: N — P(R) defined by n +— R" induces a homomorphism ¢ : Z — Ky(R).

1. ¢ is injective iff R has the IBP.

2. Suppose R has IBP. Then Ky(R) = Z iff every finitely generated projective R-module is stably free.
Proof.

1. By Lemma 3(4), we know that [P] = [Q] in Ko(R) iff P& R™ = Q & R™ for some m.

2. [P] = [R"] iff P is stably free.

O

Example 3. Suppose that R is commutative. There is a ring homomorphism R — F with F' a field. Then
the induced map Ko(R) — Ko(F) = Z sends [R] to 1. Also, the map ¢ : Z — K((R) is injective by Lemma
4. Letting K := ker(Ko(R) — Z), we get a split exact sequence of abelian groups, so that Ko(R) 2 Z ® K.

l1— K —— Ky(R) — Z —— 1

Example 4. A ring R is a flasque if there is an R-bimodule M which is also a finitely generated projective
on one side along with a bimodule isomorphism R® M = M. Then since P& (PRr M) = PRr (R M) =
P ®r M, we see that Ko(R) = 0.

Example 5. A module is semisimple if it is the direct sum of simple modules. A ring R is called semisimple
if it a semisimple R-module. Notice that any semisimple module is both Noetherian and Artinian and that
any module over a semisimple ring is semisimple.

Suppose R is semisimple with summands V7,...,V,,. Then any finitely generated R-module is @;Zl Vili7
where the [; are uniquely determined by Krull-Remak-Schmidt. Hence P(R) = N™ and Ko(R) = Z™.



Example 6. A ring R is von Neumann regular if (Vr € R)(3x, € R)(rz,r = r). It turns out that any
one-sided ideal in R is generated by an idempotent element. Let E/N denote the set of idempotent elements

in R under the equivalence e; ~ es if the two generate the same ideal. Then E/N forms a lattice where the
join and meet correspond to ideal addition and intersection, respectively.

Kaplansky (1998) proved that any projective R-module is some direct sum of (e) with e idempotent. It
follows that £/ determines Ko(R).

Proposition 3. Let R be commutative. It can be shown that the following are equivalent.
1. Ryeq is a commutative von Neumann regular ring.
2. R has (Krull) dimension 0.
3. Spec(R) is compact, Hausdorff, and totally disconnected. (This is a very strong condition.)

Lemma 5. If I C R is nilpotent, then it’s not hard to show that P(R/[) = P(R), hence Ko(R) = KO(R/I).

Definition. Let R be a commutative ring. The rank of a finitely generated projective R-module P at a
prime ideal p is the function
tk : Spec(R) = N p s dimg, (P ® Ry).

Proposition 4. The rank of a finitely generated projective module is
1. continuous.
2. a semiring homomorphism.

Definition. An R-module M is a componentwise free module if we have R =[] | R; and M =[] | R{’
for some integers c¢;. Note that M must be projective in this case.

Lemma 6. Let R be commutative. The monoid L of finitely generated componentwise free R-modules has
is isomorphic to [Spec(R), N].

Proof. Let f : Spec(R) — N be continuous. By some point-set topology, we see that im f is finite, say
{n1,...,n.}. It’s also possible to write R = Ry x --- x R.. Then R := R} x --- x Rl is a finitely
generated componentwise free R-module. Moreover, f — R/ has inverse rk restricted to componentwise free
modules. O

Theorem 1. (Pierce) If R is a 0-dimensional commutative ring, then
KO(R) = [Spec(R),Z],
where [X, Y] denotes the semiring of continuous maps f: X — Y.

Proof. We have that R,eq is a commutative von Neumann regular ring by Proposition 3. Any ideal (d)
in Ryeq where d is idempotent is componentwise free. By Kaplansky, every object X of P(R) is therefore
componentwise free. Therefore, P(Ryeq) = [Spec(Ryred), N], giving Ko(Rred) = [Spec(Rred), Z]. By Lemma
5 and the fact that Spec(Ryeq) is homeomorphic to Spec(R), it follows that Ky(R) = [Spec(Ryred), Z] =
[Spec(R), Z]. O

Remark 3. When R is commutative, let Hy(R) := [Spec(R), Z]. If R is Noetherian, then Hy(R) = Z° where
¢ < oo denotes the number of components of Hy(R). If R is a domain, then Hy(R) is connected, implying
Hy(R) = Z.

The submonoid L C P(R) of componentwise free modules is cofinal, so that K (L) < Ky(R). Moreover,
K(L) = Hyo(R) by Lemma 6.

The rank of a projective module induces a homomorphism rank : Ko(R) — Ho(R). Since rank(Rf) = f
for any R/ € L, we see that

1 —— Hy(R) 2 K(L) —— Ko(R) =25 Hy(R) —— 1



splits. This implies that _
Ko(R) = Ho(R) ® Ko(R),

where Ko(R) denotes ker(rank).

Example 7. The Whitehead group of a group G is the quotient Who(G) = Ko(Z[G] )/Z, where Z[G] denotes
the group ring. The augmentation map f : Z[G] — Z induces a split exact sequence

1 —— Who(G) —— Ko(Z|G)) — Ko(Z)=7Z —— 1 .
Hence Ko(Z[G]) = Z & Who(G). We know due to Swan that if G is finite, then Who(G) = Ko(Z[G]) and
7= Hy(Z).

Definition. A functor F : € — 2 is additive if F : €(X,Y) — 2(FX,FY) is a homomorphism of abelian
groups for any X, Y € ob%.

Definition. The rings R and S are Morita equivalent if there exists an additive equivalence between Mod g R
and Modg.

Theorem 2. If R and S are Morita equivalent, then Ky(R) & Ky(5).
Proof. Click here for a self-contained proof. O
[[We move from algebraic to topological K-theory.]]

Definition. Let f: FF — X and g : G — X be vector bundles. The Whitney sum of f and g is the vector
bundle F & G on X whose fiber at x € X is F, @ G,. The tensor product bundle F & G is defined similarly.

Definition. A vector bundle homomorphism between ¢ : £ — X; and ¢ : By — X5 is a pair of maps
f:FE1 — Eyand g: X7 — X5 such that the following conditions holds.

1.
El 4) E2

o] lv
X1 T> X2
2. For each z € X1, the map f [4-1(,): ¢~ (x) = ¢! (g(x)) is a linear map.

Definition. Let (Vectr(X),®) denote the abelian monoid of (isomorphism classes of) F-vector bundles on
the paracompact space X. We define

KU(X) = K(Vecte(X))  KO(X) = K(Vectz(X)).

Note that these are commutative rings with identity. We apply the notation K;,,(—) on topological
spaces when we wish to omit the base field.

Remark 4. KU(—) and KO(—) define contravariant functors Top — Ab. Let f : Y — X be a map of
spaces and ¢ : E — X be a vector bundle. Define the subspace f*E = {(y,e) € Y x E : f(y) = é(e)}.
Define the vector bundle f*(¢) : f*E — Y as the restriction of the projection map 7 : Y x E — Y. Hence
we have a morhism ¢ — f*(¢) — Vectr(X) to Vectr(Y) of monoids. The universal property of K induces
a unique morphism f* : K;op(X) — Kiop(Y).

Lemma 7. If X and Y are homotopy equivalent, then K(X) = K(Y).

Proof. Apply the Homotopy Invariance Theorem (HIT), which states that if Y is paracompact and f,g :
Y — X are homotopic, then f*E = g*FE for any vector bundle FE over X. O

Example 8.


http://www.staff.science.uu.nl/~henri105/Seminars/AlgKthy2011Talk3.pdf

1. Kiop(x) = Z.
2. If X is contractible, then the HIT implies KO(X) = KU(X) =Z
3. We compute the following groups. See 1.4.9 of The K-book for a justification.
KO(SHY=ZxCy, KU(SY)2=7Z
KO(S*)=ZxCy KU(S*)2ZxZ
KO(S*) = KU(S*) =7
X

K)(SY2KUSY2ZxZ

Definition. The dimension of bundle E over X is the continuous homomorphism (EI\H(E) : X — N given
by x +— dim(E,).

Definition. A vector bundle p : E — X is a componentwise trivial bundle if we can write X = [[ X; such
that each X; is a component of X and p [,-1(x,) is trivial.

Lemma 8. The submonoid of componentwise trivial bundles over X is isomorphic to [X, N].

Proof. Send a given map f: X — Nto T/ := ]_[ieN(ffl(i) x F). Conversely, if E be a componentwise trivial
bundle, then F & 7dim(E), O

Remark 5. Thus, the sub-monoid of trivial bundles and the sub-monoid of componentwise trivial bundles
are naturally isomorphic to N and [X, N], respectively. When X is compact, these are cofinal in Vectp(X)
by the Subbundle Theorem (proven using Riemannian geometry), giving Z < [X,Z] < Ky, (X).

Remark 6. We get a split exact sequence.

_ VRS
1 — Ktop(X) —_— Ktop(X) — [X,Z] — 1,

—

dim
where Kyo,(X) denotes ker((ir\n).

Remark 7. The map of monoids Vectr(X) — Vecte(X) given by [E] — [E ® C] extends by universality
to a homomorphism KO(X) — KU(X). Likewise, the forgetful functor Vectc(X) — Vectr(X) extends to
a homomorphism KU (X) - KO(X).

Theorem 3. (Swan) Here is a nice early connection between algebraic and topological K-theory. Let
X be a compact Hausdorff space and C(X,F) denote the ring of continuous functions X — F. For any
E eVectp(X),set T'(X,E) ={s: X — E : pos=1Idx}, the vector space of global sections of E. Then the
map E — I'(X, F) induces isomorphisms KO(X) = K(C(X,R)) and KU (X) = Ko(C(X,C)).

Definition. Our results thus far can be extended to symmetric monodical categories because these come
equipped with a notion of direct sum that enabled our Grothendieck construction. A symmetric monoidal
category S is equipped with a functor O : § x § — S, a base object e, and four natural isomorphisms
expressing commutativity, associativity, and that e acts as an identity. These four must also satisfy coherence
properties.

Example 9. The following are examples of symmetric monoidal category .
1. k-vector spaces with ®y.
2. Any category with finite coproducts where st := s 1 t.
3. The category of pointed topological spaces where sO0t := s At and e := S°.

Definition. Suppose that the class of isomorphism classes of objects of a category S is a set, called S™°. If
S is symmetric monoidal, then (5'5°,0J) is an abelian monoid with identity element e. Then we define the
Grothendieck group of S as Ky(.5).



