
Perry Hart
Homotopy and K-theory seminar

Talks #9
October 19, 2018

Abstract
We begin low-dimensional K-theory, i.e., describe K0(−), K1(−), and K2(−), in various settings.

The main sources for this talk are nLab, Chapters I and II of The K-book, and Chapter 1 of Friedlander.

Definition. Recall that the forgetful functor U : Ab → CMon admits a left adjoint K : CMon → Ab,
called the group completion functor. For any commutative monoid (C,+), we call the abelian group K(C)
the Grothendieck group of G, which is constructed as follows.

Consider S := C × C�∼ where (a1, b1) ∼ (a2, b2) if

(a1 + b2 + k = b1 + a2 + k)

for some k ∈ C. Note that ∼=∼′ where (a1, b1) ∼′ (a2, b2) if

(a1 + k1, b1 + k1) = (a2 + k2, b2 + k2)

for some (k1, k2) ∈ C × C. Then set K(C) = (S,+), where + is inherited from C and acts componentwise
on equivalence classes. Notice that ∼′ makes it clear that [a1, b1]−1 = [b1, a1].

Proposition 1. The inclusion C ↪→ K(C) given by x 7→ [x] := [x, 0] is injective iff C is a cancellation
monoid.

Lemma 1. (Universal property of the Grothendieck group) Let B be an abelian group and f : A → B a
monoid homomorphism. Then we have

A

K(A) B

f

∃!f̃

.

Proof. Define f̃ by [a1, b1] 7→ f(a1)− f(b1).

Lemma 2. K(C1 × C2) ∼= K(C1)×K(C2).

Definition. A submonoid L of C is cofinal if for any c ∈ C, there is some c′ ∈ C such that c+ c′ ∈ L.

Proposition 2. Let L be cofinal in commutative C.

1. Any element of K(C) can be written as [m]− [n] for some m,n ∈ C.

2. K(L) ≤ K(C).

3. Any element of K(C) can be written as [m]− [l] for some m ∈ C and l ∈ L.

4. If [m] = [m′], then m+ l = m′ + l for some l ∈ L.

Example 1.

1. K(N) ∼= Z via [a1, b1] 7→ a1 − b1.

2. K(Z×) ∼= Q× via [a1, b1] 7→ a1
b1

.

Definition. Let R be a unital ring. Let (P(R),⊕,⊗R) denote the semiring of (isomorphism classes of)
finitely generated projective R-modules. Then we define K0(R) = K(P(R)).

Lemma 3. P(R1 ×R2) ∼= P(R1)×P(R2). Therefore, K0 can be computed componentwise by Lemma 2.
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Remark 1. K0(−) defines a functor from Ring to Ab. Let f : R→ S be a ring homomorphism and P be
a finitely generated projective R-module. The assignment of f under K0(−) goes as follows.

1. Construct S⊗RP , the base extension of P . This is the unique S-module (s′, s⊗p) 7→ s′s×p compatible
with the R-module structure on S induced by f . This is also an R-module with f(r) · t := r · t for
t ∈ S⊗RP . We know that P⊕Q is free for some R-moduleQ. Since S⊗R(P⊕Q) ∼=S (S⊗RP )⊕(S⊗RQ)
and P ⊕Q is free over S via f , it follows that S ⊗R P is a finitely generated projective S-module.

2. We’ve just defined a monoid homomorphism f̃ : P(R)→ P(S).

3. Apply the universal property of K to find the filling

P(R) P(S)

K(P(R)) K(P(S))

f̃

f∗

,

where we set K0(f) = f∗.

Remark 2. (Eilenberg Swindle) Suppose P ⊕Q = Rn as R-modules. Then

P ⊕R∞ ∼= P ⊕ (Q⊕ P )⊕ (Q⊕ P )⊕ · · · ∼= (P ⊕Q)⊕ (P ⊕Q)⊕ · · · ∼= R∞.

Therefore, if we added R∞ to P(R), then we would have [P ] = 0 for each finitely generated projective P .

Example 2. If R = F is a field, then P(R) ∼= N and, by Example 1, K0(R) ∼= Z.
We can generalize this phenomenon a bit.

Definition. A ring R has the invariant basis property (IBP) if Rn 6∼= Rm when n 6= m. Note that any
commutative ring has the IBP.

Definition. An R-module P is stably free of rank m− n if P ⊕Rm ∼= Rn for some m and n.

Lemma 4. The map f : N→ P(R) defined by n 7→ Rn induces a homomorphism φ : Z→ K0(R).

1. φ is injective iff R has the IBP.

2. Suppose R has IBP. Then K0(R) ∼= Z iff every finitely generated projective R-module is stably free.

Proof.

1. By Lemma 3(4), we know that [P ] = [Q] in K0(R) iff P ⊕Rm ∼= Q⊕Rm for some m.

2. [P ] = [Rn] iff P is stably free.

Example 3. Suppose that R is commutative. There is a ring homomorphism R→ F with F a field. Then
the induced map K0(R)→ K0(F ) ∼= Z sends [R] to 1. Also, the map φ : Z→ K0(R) is injective by Lemma
4. Letting K := ker(K0(R)→ Z), we get a split exact sequence of abelian groups, so that K0(R) ∼= Z⊕K.

1 K K0(R) Z 1

Example 4. A ring R is a flasque if there is an R-bimodule M which is also a finitely generated projective
on one side along with a bimodule isomorphism R⊕M ∼= M . Then since P ⊕ (P ⊗RM) ∼= P ⊗R (R⊕M) ∼=
P ⊗RM , we see that K0(R) = 0.

Example 5. A module is semisimple if it is the direct sum of simple modules. A ring R is called semisimple
if it a semisimple R-module. Notice that any semisimple module is both Noetherian and Artinian and that
any module over a semisimple ring is semisimple.

Suppose R is semisimple with summands V1, . . . , Vm. Then any finitely generated R-module is
⊕m

i=1 V
li
i ,

where the li are uniquely determined by Krull-Remak-Schmidt. Hence P(R) ∼= Nm, and K0(R) ∼= Zm.
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Example 6. A ring R is von Neumann regular if (∀r ∈ R)(∃xr ∈ R)(rxrr = r). It turns out that any
one-sided ideal in R is generated by an idempotent element. Let E�∼ denote the set of idempotent elements
in R under the equivalence e1 ∼ e2 if the two generate the same ideal. Then E�∼ forms a lattice where the
join and meet correspond to ideal addition and intersection, respectively.

Kaplansky (1998) proved that any projective R-module is some direct sum of (e) with e idempotent. It
follows that E�∼ determines K0(R).

Proposition 3. Let R be commutative. It can be shown that the following are equivalent.

1. Rred is a commutative von Neumann regular ring.

2. R has (Krull) dimension 0.

3. Spec(R) is compact, Hausdorff, and totally disconnected. (This is a very strong condition.)

Lemma 5. If I ⊂ R is nilpotent, then it’s not hard to show that P(R�I) ∼= P(R), hence K0(R) ∼= K0(R�I).

Definition. Let R be a commutative ring. The rank of a finitely generated projective R-module P at a
prime ideal p is the function

rk : Spec(R)→ N p 7→ dimRp
(P ⊗Rp).

Proposition 4. The rank of a finitely generated projective module is

1. continuous.

2. a semiring homomorphism.

Definition. An R-module M is a componentwise free module if we have R =
∏n
i=1 Ri and M ∼=

∏n
i=1 R

ci
i

for some integers ci. Note that M must be projective in this case.

Lemma 6. Let R be commutative. The monoid L of finitely generated componentwise free R-modules has
is isomorphic to [Spec(R),N].

Proof. Let f : Spec(R) → N be continuous. By some point-set topology, we see that im f is finite, say
{n1, . . . , nc}. It’s also possible to write R = R1 × · · · × Rc. Then Rf := Rn1

1 × · · · × Rnc
c is a finitely

generated componentwise free R-module. Moreover, f 7→ Rf has inverse rk restricted to componentwise free
modules.

Theorem 1. (Pierce) If R is a 0-dimensional commutative ring, then

K0(R) ∼= [Spec(R),Z],

where [X,Y ] denotes the semiring of continuous maps f : X → Y .

Proof. We have that Rred is a commutative von Neumann regular ring by Proposition 3. Any ideal (d)
in Rred where d is idempotent is componentwise free. By Kaplansky, every object X of P(R) is therefore
componentwise free. Therefore, P(Rred) ∼= [Spec(Rred),N], giving K0(Rred) ∼= [Spec(Rred),Z]. By Lemma
5 and the fact that Spec(Rred) is homeomorphic to Spec(R), it follows that K0(R) ∼= [Spec(Rred),Z] ∼=
[Spec(R),Z].

Remark 3. When R is commutative, let H0(R) := [Spec(R),Z]. If R is Noetherian, then H0(R) ∼= Zc where
c < ∞ denotes the number of components of H0(R). If R is a domain, then H0(R) is connected, implying
H0(R) ∼= Z.

The submonoid L ⊂ P(R) of componentwise free modules is cofinal, so that K(L) ≤ K0(R). Moreover,
K(L) ∼= H0(R) by Lemma 6.

The rank of a projective module induces a homomorphism rank : K0(R)→ H0(R). Since rank(Rf ) = f
for any Rf ∈ L, we see that

1 H0(R) ∼= K(L) K0(R) H0(R) 1rank
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splits. This implies that
K0(R) ∼= H0(R)⊕ K̃0(R),

where K̃0(R) denotes ker(rank).

Example 7. The Whitehead group of a group G is the quotient Wh0(G) = K0(Z[G])�Z, where Z[G] denotes
the group ring. The augmentation map f : Z[G]→ Z induces a split exact sequence

1 Wh0(G) K0(Z[G]) K0(Z) = Z 1 .

Hence K0(Z[G]) ∼= Z ⊕Wh0(G). We know due to Swan that if G is finite, then Wh0(G) ∼= K̃0(Z[G]) and
Z ∼= H0(Z).

Definition. A functor F : C → D is additive if F : C (X,Y )→ D(FX,FY ) is a homomorphism of abelian
groups for any X,Y ∈ ob C .

Definition. The rings R and S are Morita equivalent if there exists an additive equivalence between ModRR
and ModS .

Theorem 2. If R and S are Morita equivalent, then K0(R) ∼= K0(S).

Proof. Click here for a self-contained proof.

[[We move from algebraic to topological K-theory.]]

Definition. Let f : F → X and g : G → X be vector bundles. The Whitney sum of f and g is the vector
bundle F ⊕G on X whose fiber at x ∈ X is Fx ⊕Gx. The tensor product bundle F ⊕G is defined similarly.

Definition. A vector bundle homomorphism between φ : E1 → X1 and ψ : E2 → X2 is a pair of maps
f : E1 → E2 and g : X1 → X2 such that the following conditions holds.

1.
E1 E2

X1 X2

f

φ ψ

g

2. For each x ∈ X1, the map f �φ−1(x): φ−1(x)→ ψ−1(g(x)) is a linear map.

Definition. Let (V ectF(X),⊕) denote the abelian monoid of (isomorphism classes of) F-vector bundles on
the paracompact space X. We define

KU(X) = K(V ectC(X)) KO(X) = K(V ectR(X)).

Note that these are commutative rings with identity. We apply the notation Ktop(−) on topological
spaces when we wish to omit the base field.

Remark 4. KU(−) and KO(−) define contravariant functors Top → Ab. Let f : Y → X be a map of
spaces and φ : E → X be a vector bundle. Define the subspace f∗E = {(y, e) ∈ Y × E : f(y) = φ(e)}.
Define the vector bundle f∗(φ) : f∗E → Y as the restriction of the projection map π : Y × E → Y . Hence
we have a morhism φ 7→ f∗(φ) → V ectF(X) to V ectF(Y ) of monoids. The universal property of K induces
a unique morphism f∗ : Ktop(X)→ Ktop(Y ).

Lemma 7. If X and Y are homotopy equivalent, then K(X) ∼= K(Y ).

Proof. Apply the Homotopy Invariance Theorem (HIT), which states that if Y is paracompact and f, g :
Y → X are homotopic, then f∗E ∼= g∗E for any vector bundle E over X.

Example 8.
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1. Ktop(∗) = Z.

2. If X is contractible, then the HIT implies KO(X) = KU(X) = Z

3. We compute the following groups. See I.4.9 of The K-book for a justification.

KO(S1) ∼= Z× C2 KU(S1) ∼= Z

KO(S2) ∼= Z× C2 KU(S2) ∼= Z× Z
KO(S3) ∼= KU(S3) ∼= Z

K)(S4) ∼= KU(S4) ∼= Z× Z

Definition. The dimension of bundle E over X is the continuous homomorphism d̂im(E) : X → N given
by x 7→ dim(Ex).

Definition. A vector bundle p : E → X is a componentwise trivial bundle if we can write X =
∐
Xi such

that each Xi is a component of X and p �p−1(Xi) is trivial.

Lemma 8. The submonoid of componentwise trivial bundles over X is isomorphic to [X,N].

Proof. Send a given map f : X → N to T f :=
∐
i∈N(f−1(i)×F). Conversely, if E be a componentwise trivial

bundle, then E ∼= T d̂im(E).

Remark 5. Thus, the sub-monoid of trivial bundles and the sub-monoid of componentwise trivial bundles
are naturally isomorphic to N and [X,N], respectively. When X is compact, these are cofinal in V ectF(X)
by the Subbundle Theorem (proven using Riemannian geometry), giving Z ≤ [X,Z] ≤ Ktop(X).

Remark 6. We get a split exact sequence.

1 K̃top(X) Ktop(X) [X,Z] 1
d̂im

,

where K̃top(X) denotes ker(d̂im).

Remark 7. The map of monoids V ectR(X) → V ectC(X) given by [E] 7→ [E ⊗ C] extends by universality
to a homomorphism KO(X) → KU(X). Likewise, the forgetful functor V ectC(X) → V ectR(X) extends to
a homomorphism KU(X)→ KO(X).

Theorem 3. (Swan) Here is a nice early connection between algebraic and topological K-theory. Let
X be a compact Hausdorff space and C(X,F) denote the ring of continuous functions X → F. For any
E ∈ V ectF(X), set Γ(X,E) = {s : X → E : p ◦ s = IdX}, the vector space of global sections of E. Then the
map E 7→ Γ(X,E) induces isomorphisms KO(X) ∼= K0(C(X,R)) and KU(X) ∼= K0(C(X,C)).

Definition. Our results thus far can be extended to symmetric monodical categories because these come
equipped with a notion of direct sum that enabled our Grothendieck construction. A symmetric monoidal
category S is equipped with a functor � : S × S → S, a base object e, and four natural isomorphisms
expressing commutativity, associativity, and that e acts as an identity. These four must also satisfy coherence
properties.

Example 9. The following are examples of symmetric monoidal category .

1. k-vector spaces with ⊗k.

2. Any category with finite coproducts where s�t := sq t.

3. The category of pointed topological spaces where s�t := s ∧ t and e := S0.

Definition. Suppose that the class of isomorphism classes of objects of a category S is a set, called Siso. If
S is symmetric monoidal, then (Siso,�) is an abelian monoid with identity element e. Then we define the
Grothendieck group of S as K0(S).
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